
Automated Fugue Generation
Yu Yue Yue Yang

Advised by

Prof. Andrew Horner

♩♩♩♩ Introduction

♮ This project aims to build a system that generates three-voice fugues in the style of the composer J.S. Bach.

♮ Our system help novice fugue composers explore musical possibilities beyond their usual thinking capacities.

♮ A fugue is a multi-voice musical composition, built on a subject (theme) that imitates itself frequently.

♮ In music, imitation is the repetition of a melody in close succession, but in different voice and pitch levels.

Fig. 1 Beginning measures of J.S. Bach’s Fugue No.4 in C♯ minor, BWV 849

The first three subject entries are highlighted in red, green and amber.

♪ Design of Fugue Structure

♮ Our system formalizes a fugue as a 3 × n table where Y-axis represents the voices and X-axis is the timeline.

♮ Each cell represents a segment which is either a subject entry or free counterpoint that lasts for 2 bars.

♮ All the subject entries must share the exact same melody, but they can be at different keys or pitch levels.

♮ All segments must conform to the requirements of the chord progression generated from tonal center sequence.

♮ Each bundle (column) contains three segments from the three voices which sound simultaneously.

Fig. 2 Fugue structure of the sample result

Chord
Progression

Tonal

Center

♫ Design of Bundle Optimization

♮ A bundle is comprised of three segments. Each segment is described by a collection of:

 ♭ The pattern of repetition (e.g. Segment = AAAB where A = DE and B = FF)

 ♭ A set of atomic chunks, each of which describes 4 time steps of attacks / non-attack (e.g. D, E, F below);

 ♭ The way the chunks are linked together (e.g. red & orange arrows below indicate degree difference)

Fig. 3 Segment structure: Soprano of bar 5-6 in the sample result

The three variables which determine the musical notes of the next chunk

Atomic chunk Offset reference point Degree offset

♮ Genetic Algorithm is used to optimize a

bundle.

♮ The mutator can apply changes to the latter two

properties of a segment in a bundle.

♮ A population of bundle is firstly randomly

created, then mutated before the best mutants are
chosen by evaluators to form the next generation of
population. The process ends when certain criteria
are satisfied.

♮ Intra-voice (per-segment) evaluators favor

fitness to the chord progression, moderate density of notes, moderate pitch span, and smooth linkage with previous
segment in the timeline.

Candidates

Mutants

Mutator

Generator

Requirements

Scoreboard
Evaluator

Solution

Criteria
Reached

?

Y

N

Sort

Select Best

Bad

Too low
Good

Just right
Bad

Too high

Fitness
to chord

Note
density

Pitch
span

♬♬♬♬ Results

This sample fugue composition can be heard at http://www.newgrounds.com/audio/listen/417989 (barcode below)

♫ Conclusion & Future Work

♮ Most of the compositions generated by our program are musically

interesting except in certain cases the transition might seem unnatural;

♮ The program generates better melodies when subject entry is provided

compared to free counterpoint, although the subjects are also generated by the
program itself;

♮ Dynamic evaluator can be introduced to avoid trapping in local maximums.

